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A B S T R A C T

Unsupervised Machine Learning (ML) is becoming increasingly popular for solving various types of data ana-
lytics problems including feature extraction, blind source separation, exploratory analyses, model diagnostics,
etc. Here, we have developed a new unsupervised ML method based on Nonnegative Tensor Factorization (NTF)
for identification of the original groundwater types (including contaminant sources) present in geochemical
mixtures observed in an aquifer. Frequently, groundwater types with different geochemical signatures are re-
lated to different background and/or contamination sources. The characterization of groundwater mixing pro-
cesses is a challenging but very important task critical for any environmental management project aiming to
characterize the fate and transport of contaminants in the subsurface and perform contaminant remediation.
This task typically requires solving complex inverse models representing groundwater flow and geochemical
transport in the aquifer, where the inverse analysis accounts for available site data. Usually, the model is cali-
brated against the available data characterizing the spatial and temporal distribution of the observed geo-
chemical types. Numerous different geochemical constituents and processes may need to be simulated in these
models which further complicates the analyses. Additionally, the application of inverse methods may introduce
biases in the analyses through the assumptions made in the model development process. Here, we substitute the
model inversion with unsupervised ML analysis. The ML analysis does not make any assumptions about un-
derlying physical and geochemical processes occurring in the aquifer. Our ML methodology, called NTFk, is
capable of identifying (1) the unknown number of groundwater types (contaminant sources) present in the
aquifer, (2) the original geochemical concentrations (signatures) of these groundwater types and (3) spatial and
temporal dynamics in the mixing of these groundwater types. These results are obtained only from the measured
geochemical data without any additional site information. In general, the NTFk methodology allows for inter-
pretation of large high-dimensional datasets representing diverse spatial and temporal components such as state
variables and velocities. NTFk has been tested on synthetic and real-world site three-dimensional datasets. The
NTFk algorithm is designed to work with geochemical data represented in the form of concentrations, ratios (of
two constituents; for example, isotope ratios), and delta notations (standard normalized stable isotope ratios).

1. Introduction

Characterizing contaminated groundwater sites presents a number
of major challenges, and these challenges have remained key areas of
research in subsurface hydrology for several decades (Gelhar, 1993;
Fetter and Fetter, 1999; Vengosh et al., 2014). One of the major chal-
lenges is the manifold of uncertainties that are present in these sub-
surface environments. Characterizing the source(s) of the contamina-
tion is often of paramount importance and this alone comes with
uncertainties in the location, geochemical signature, and even the
number of contaminant sources. Similarities in the geochemical sig-
natures of different groundwater types, geochemical interference

between groundwater types, and complex physical and geochemical
processes (advection, diffusion, dispersion, sorption, retardation, pre-
cipitation, phase partitioning, biodegradation, biogeochemical reac-
tions, etc) during transport from the source location to the observation
location often make source identification extremely challenging. Fur-
thermore, the geochemical measurement data are affected by random
and systematic errors which additionally complicates the analyses.

The water at a given time and location in the subsurface is a mixture
of water with different origins and geochemical signatures (which we
call groundwater types) (Deutsch and Siegel, 1997). These groundwater
types might be associated with (potentially contaminated) sources of
groundwater recharge or different upstream regions in the subsurface
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(which can be called background sources). In addition, groundwater
flows through different regions of the subsurface with different rock
types and geochemical properties that can modify its geochemical sig-
natures via physical and chemical processes (e.g., reactions and ion
exchanges). Groundwater samples collected at multiple wells over time
can be used to glean information about these groundwater types. The
identification of these groundwater types is an important task in
characterizing a contaminated aquifer site (Wagner, 1992; Böhlke and
Denver, 1995; Lapworth et al., 2012). The typical approach to identi-
fying these groundwater types utilizes numerical models that simulate
flow and transport in the aquifer and model calibration techniques to
enable the model to accurately reproduce the observed site data
(Wagner, 1992; Neupauer et al., 2000; Atmadja and Bagtzoglou, 2001;
Michalak and Kitanidis, n.d.; Guan et al., 2006; Mamonov and Tsai,
2013; Hamdi and Mahfoudhi, 2013; Murray-Bruce and Dragotti, 2014;
Borukhov and Zayats, 2015). These models are often very complex
requiring the simulation of numerous geochemical constituents (cf.
(Hammond et al., 2014; Hansen et al., 2017)) which can make these
analyses computationally expensive, often requiring compromises be-
tween fidelity to the physics/chemistry and computational efficiency.
This is closely related to contaminant source zone identification for
which numerous sophisticated methods have been developed. One
common approach uses partitioning tracers to estimate heterogeneous
permeability and nonaqueous phase liquid saturation (Jin et al., 1995;
James et al., 2000; Zhang and Graham, 2001; Yeh and Zhu, n.d.; Illman
et al., 2010). Additionally, these complex model-based approaches
often require the set-up of site-specific grids in real-world cases (Gzyl
et al., 2014). The overarching theme of these approaches is to combine
a numerical model with an optimization scheme (Ayvaz, 2010), though
sometimes model uncertainty is also considered (Sun et al., 2006).

Recently, methods for analyzing sources of groundwater con-
tamination have been developed that utilize machine learning (ML) and
statistical techniques (Chan and Huang, 2003; Rasekh and Brumbelow,
2012). Methods such as factor (Harman, 1976) and principal compo-
nent (Jolliffe, 2002) analysis have been used to describe variations and
evolution in the chemical composition of water types (Knudson et al.,
1977; Helena et al., 2000). In addition, unsupervised ML techniques
such as discriminant (Scholkopft and Mullert, 1999) and clustering
(Diday and Simon, 1980) analysis can group objects into two or more
classes (Shrestha and Kazama, 2007; Tariq et al., 2008). Unsupervised
ML based on nonnegative matrix factorization (NMF) methods
(Throckmorton et al., 2016; Vesselinov et al., n.d.-a) have been used to
identify groundwater types and their mixing ratios.

Another approach is to use supervised ML techniques (such as
neural networks (Yegnanarayana, 2009), support vector machines
(Drucker et al., 1999), locally weighted projection regression
(Vijayakumar and Schaal, 2000), and relevance vector machines
(Tipping, 2001)) to replace or supplement the complex numerical
models previously mentioned. These ML-developed models can be used
to make predictions related at groundwater contamination sites (Khalil
et al., n.d.). Quasi-optimal learning (Cervone et al., 2010) has been used
to explore a symbolic supervised ML classification method to under-
stand the relationship between different chemical species in ground and
surface water. The drawback of the supervised ML methods compared
to the unsupervised ML method is that they require extensive training
based on subject-matter expertise, existing site data or physics-model
outputs. The process is computationally intensive and can introduce
bias in the analyses.

The unsupervised nonnegative tensor factorization (NTF) approach
proposed here is similar to nonnegative matrix factorization (NMF)
methods developed recently (Throckmorton et al., 2016; Vesselinov
et al., n.d.-a). To understand the advance from the NMF method to the
NTF method, we must first consider the structure of the data. The data
that are assimilated by these methods comes from the observation of (1)
chemical species at different (2) locations and (3) times. The NMF
methods can only consider variability in two of these three components

at once, for example, observations of different species at different lo-
cations but at a fixed time (Vesselinov et al., n.d.-a). This comes from
the fact that a matrix has two indices—one can be associated with the
locations and another with the species, but none remains to be asso-
ciated with the different times. The NTF method allows for an arbitrary
number of indices enabling it to consider variability in all three (spe-
cies, location, time) providing an advantage compared to NMF. Both
the NMF and NTF methods provide a means of analysis that does not
rely on complex inverse models, making it less computationally ex-
pensive and with fewer assumptions built-in.

The main goal of the paper is to present and demonstrate the ap-
plicability of a novel unsupervised ML algorithm called NTFk. NTFk
performs a Blind Source Separation (BSS) analysis (Belouchrani et al.,
1997), based on Nonnegative Tensor Factorization (NTF) (Cichocki
et al., 2009), combined with a custom clustering algorithm (Vesselinov
et al., n.d.-a; Alexandrov and Vesselinov, 2014). Here, NTFk is applied
to unmix the geochemical signatures in the observations and identify
the contaminant sources. As a result, NTFk is capable of identifying (1)
the unknown number of groundwater types (contaminant sources)
present in the aquifer, (2) the original geochemical concentrations
(signatures) of these groundwater types and (3) spatial and temporal
dynamics in the mixing of these groundwater types. Since the problem
involves mixing, NTFk here is implemented applying additional opti-
mization constraints. NTFk is a high-dimensional extension of our ex-
isting matrix-based NMFk methodology developed in (Throckmorton
et al., 2016; Vesselinov et al., n.d.-a; Alexandrov and Vesselinov, 2014).

Using synthetic and real-world site data, we demonstrate that NTFk
is capable of accurately determining the unknown number of con-
taminant sources from observation samples of their mixtures, without
any additional information. In addition, our methodology can also es-
timate the source locations based on the estimated mixing coefficients
(at the monitoring wells) and monitoring well location coordinates. Our
methodology also allows for generation of spatial and temporal maps of
estimated contaminant mass distribution in the subsurface. The NTFk
methodology is coded in Julia (Bezanson et al., n.d.) and an open-
source code implementing our algorithm will be released soon. The
NTFk algorithm works with geochemical data represented in the form
of concentrations, ratios (of two constituents, for example, isotope ra-
tios), and delta notations (standard normalized stable isotope ratios).
Despite the methodological complexities discussed below, the algo-
rithm is fast and relatively easy to implement.

2. Methodology

2.1. Blind source separation (BSS)

In the analyses discussed here, we assume that the geochemical
observations are taken at several detectors (sampling points; typically
monitoring wells) distributed in space. When there are multiple con-
tamination sources in the aquifer each detector registers a mixture of
contamination fields (plumes) over time originating from different
sources (release locations). Our objective is to identify the unknown
number of original contamination sources, which necessitates decom-
posing the recorded transient mixtures to their original components.
Through the ML analyses, we also identify geochemical concentrations
(signatures) of the original sources and characterize spatial and tem-
poral dynamics in the mixing of contaminant sources in the aquifer.
These results are obtained only based on the observed concentration
data without any other site information.

Our novel unsupervised ML methodology, NTFk, is a method for
feature extraction and exploratory analysis capable of revealing fea-
tures hidden in data. NTFk is based on NTF, which is an emerging re-
search area in the field of data analytics and data compression
(Cichocki et al., 2009; Kolda and Bader, 2009). In addition to extracting
hidden features that are buried in large high-dimensional datasets, NTF-
based methods are also used in blind source separation. BSS techniques
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are typically based on matrix factorization methods such as Principal
Component Analysis (PCA) (Jolliffe, 1986), Independent Component
Analysis (ICA) (Amari et al., 1996), and NMF (Paatero and Tapper,
1994). These techniques form a class of unsupervised machine learning
(ML) methods that are instrumental in model-free feature extraction
and dimensionality reduction. When a BSS technique is applied in
signal processing, the extracted features are the unique original signals
that form the mixtures recorded by a set of spatially distributed sensors
(e.g., the voices of several speakers recorded by multiple microphones
placed at different locations in a ballroom (Haykin and Chen, 2005)).
However, the matrix-based methods are inherently deficient for ex-
amining high-dimensional datasets (i.e., tensor datasets), which are
natural extensions of the matrix datasets. Many real-world datasets are
high-dimensional and often represent one or more state variables at a
discrete set of locations in space and time, and, as a result, are ideal for
tensor-based analyses.

There are multiple tensor factorization methods (Hitchcock, 1927;
Harshman and Lundy, 1994; De Lathauwer et al., 2000) and, among
them, we utilize the Tucker decomposition (Tucker, 1966; Andersson
and Bro, 2000). Examples of Tucker models for three-dimensional da-
tasets are presented in Fig. 1; note that multiple possible Tucker models
can be used (there are 7 possible Tucker models in the three-dimen-
sional case: 1 with 3 factor matrices, 3 with 2 factor matrices, and 3
with 1 factor matrix). To apply Tucker decomposition to a given da-
taset, we need to find not only which of the possible models to use, but
we also need to identify the size of core tensor (G in Fig. 1). Typically,
we do not have prior knowledge about the specific Tucker model and
the core size. To find the optimal decomposition model and core size,
NTFk applies analyses of the NTF solution robustness and parsimony as
discussed in Section 2.2 below.

Herein, using NTFk, we analyze three-dimensional data that re-
present the evolution in time and space of concentrations of a series of
geochemical species observed at a series of monitoring wells in time by
Tucker decomposition.

The analyzed data-tensor C has three dimensions: (s,w, t), where s
indicates a geochemical species, w a monitoring well and t an ob-
servation time. The Tucker-3 decomposition (Fig. 1) of the three-di-
mensional tensor C(s,w, t):

= ⊗ ⊗ ⊗ +C s w t G W s H w V t ε w s t( , , ) ( ) ( ) ( ) ( , , ) (1)

where ⊗ denotes a tensor product. The decomposition of the tensor
C(s,w, t) (C∈ℝ≥0

K×M×N) can be expressed by components:

∑ ∑ ∑= + ∀
= = =

C G W H V ε i j l, ,ijl
p

k

q

m

r

n

pqr ip jq lr ijl
1 1 1 (2)

where all the elements of C, G, W, H, and V are nonnegative,

≥ ∀C G W H V i j l p q r, , , , 0 , , , , , .ijl pqr ip jq lr (3)

Here, i ranges from 1 to K where K is the number of geochemical
species, j ranges from 1 to M where M is the number of monitoring
wells, and l ranges from 1 to N where N is the number of time frames
(snapshots). The NTFk methodology allows the tensor C to be sparse
(i.e., some of the observations can be missing).

In this case, the Tucker decomposition includes (i) a core tensor G
(G∈ℝ≥0

k×m×n) that represents the interactions between the s, w, and t
components ofW(s), H(w) and V(t); (ii) a factor matrixW (W∈ℝ≥0

K×k)
representing geochemical signatures of each groundwater type; (iii) a
factor matrix H (H∈ℝ≥0

M×m) accounting for dependence on the
monitoring points, and (iv) a factor matrix V (V∈ℝ≥0

N×n) that cap-
tures the time dependence. ℝ≥0 denotes the set of nonnegative real
numbers ℝ≥0= {x∈ℝ|x≥ 0}. Additionally, ε (ε∈ℝK×M×N) in Eq. (2)
denotes the unknown discrepancy between the original data C and the
Tucker estimate ∼C ( = ⊗ ⊗ ⊗∼C G W H V ); The discrepancy ε can be
caused by the presence of random measurement errors in the data
tensor C. The discrepancy can also be caused by the inadequacy of the
Tucker decomposition ∼C to represent the data. The Tucker decom-
position ∼C can be viewed as linear combinations of geochemical, spatial
(well location), and temporal features where each of these features can
have any complex nonlinear shape. The features are represented in the
factor matrices (W, H, and V) and the linear combinations among them
are given by the core tensor G. If there are nonlinear interactions among
the features, NTFk cannot resolve them in its current form. However,
for the geochemical analyses presented here, nonlinear interactions
were not needed to characterize data.

Mathematically, the solution of the nonnegative Tucker tensor de-
composition is a solution of a multi-dimensional optimization problem
with nonnegative constraints given by:

∥ − ⊗ ⊗ ⊗ ∥
≥

C G W H Vmin
G W H V

F
, , , 0

2
(4)

To extract the unknown core tensor G, and factor matricesW, H, and
V, different optimization algorithms can be applied.

To solve the geochemical problems discussed here, we reduce the
nonnegative Tucker-3 decomposition presented in Eq. (2) to Tucker-1
where (Fig. 1):

∑= + ∀
=

C G W ε i j l, ,ijl
p

k

pjl ip ijl
1 (5)

Now, the Tucker decomposition includes only (i) an unknown core
tensor G (G∈ℝ≥0

k×M×N), and (ii) an unknown factor matrix W
(W∈ℝ≥0

K×k) representing the changes in C associated with geo-
chemical species (the species-component). Here, the W matrix can be
viewed as a “source” matrix representing concentrations of K geo-
chemical species in k contaminant sources (groundwater types). The
core, G, represents the mixing ratios of these k contaminant sources
(groundwater types) at each well over time. For example, G1,2,3 will
define the mixing ratio of the source (groundwater type) 1 in well 2 at
time frame 3. Therefore, here we assume that the observational data, C,
is formed by a linear mixing of k original signals represented by the
“source” matrix W and blended by a mixing core tensor G at each ob-
servation point and time.

In addition, we impose constraints on the core tensor elements:

∑ = ∀
=

G p l1 ,
j

M

pjl
1 (6)

where we require that all the mixing ratios at each time for each
monitoring point (well) add up to 1. These constraints represent

Fig. 1. Schematic representation of various Tucker-based factorization models
for three-dimensional tensors. Herein, we employ Tucker-1 model to decom-
pose the tensor C(w, t, s) into a core tensor G and a factor matrix W.
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conservation of mass.
To analyze the tensor C, we utilize a constrained version of the

sparse nonnegative Tucker-1 decomposition model (Mørup et al.,
2008). Our constraints are imposed so that the tensor decomposition
accounts for the underlying mixing processes; the constraints are si-
milar to the approach applied by (Vesselinov et al., n.d.-a) for the
matrix-factorization problem. Our choice for nonnegative constraints is
motivated by (i) the fact that concentrations are inherently nonnegative
and (ii) our goal to relate the extracted features to easily interpretable
quantities without introducing any prior assumptions. Indeed, a mean-
ingful interpretation of the obtained results requires the extracted fea-
tures to be parts of the original data (Lee and Seung, 1999) and the
nonnegative constraints lead to extraction of strictly additive compo-
nents, which are parts of the original data (Ross and Zemel, 2006).
Thus, NTFk has the ability to identify readily understandable structure-
preserving features that enable the discovery of new causal structures
and unknown mechanisms hidden in the data (Cichocki et al., 2009).

2.2. NTFk algorithm

The NTFk algorithm starts with a random guess for W and G ele-
ments, and proceeds by minimizing the cost (objective) function, O,
which in our case is the Frobenius norm,

= ∥ − ⊗ ∥O C G W1
2 F

2
(7)

during each iteration. Minimizing the Frobenius norm (Eq. (7)) with
nonnegativity constraints (Eq. (6)) is equivalent to representing the
discrepancies between the observations, C, and the reconstruction,
G⊗W, as white noise.

Due to the constraints in Eq. (6), the classical multiplicative NTF
optimization algorithms (Cichocki et al., 2009) are not applicable. In-
stead, a nonconvex nonlinear optimization algorithm is needed, and for
this purpose, we utilized the nonlinear minimization procedure pro-
vided by Julia packages JuMP.jl and Ipopt.jl. JuMP.jl is a modeling
language for mathematical optimization embedded in Julia (Dunning
et al., n.d.). It supports a number of open-source and commercial sol-
vers for a variety of optimization problems. JuMP.jl is coupled with
Ipopt (Interior Point OPTimizer): an open-software package for large-
scale nonlinear optimization (Wächter, 2002; Wächter and Biegler,
2005; Wächter and Biegler, 2006). Here, Ipopt is applied to perform
nonconvex constrained second-order minimization.

If we knew the number of sources k, solving Eq. (7) is all we need to
perform: the best solution of Eq. (7), we would estimate matrix/tensor
elements and solve the inverse problem. However, the true number of
sources is typically unknown, and thus the number of the sources is an
unknown parameter which we have to identify from the observations.

A naive approach would be to (1) explore all of the possible solu-
tions of Eq. (7) for a range of a possible number of sources k and (2)
select the solution with the smallest norm to identify the number of
sources, ks. However, this is a flawed approach—more free parameters
(higher k) will generally lead to a better fit, irrespective of how close
the estimated number of sources is to the actual number of sources. This
would cause the naive approach to over-estimate the number of
sources:

To resolve this issue, NTFk considers all possible numbers of sources
k ranging from 1 to d (k=1, 2, …, d). For each value of k, Z different
factorizations are performed with different random initial guesses.
NTFk then estimates the accuracy and robustness of the large set of
solutions Z with a different number of sources. In NTFk, the maximum
number of explored sources d should not exceed the expected number of
observed geochemical components K (although, theoretically, the
minimization algorithm used here can be applied for any k > 1).

Thus, NTFk performs Z sets of simulations, called NTF runs, where
each run is using a different number of sources, k=1, 2, …, d, with
random initial guesses for all the unknown matrix/tensor elements. At

the end of each NTF run, we get a set of Z solutions, Uk, where each
solution contains two arrays: the matrix Wk

j and the tensor Gk
j, (for k

original sources, and j=1, 2, …, Z),

Table 1
True and estimated concentrations of four geochemical constituents (A, B, C &
D) representing three synthetic sources (S1, S2 & S3).

Source True Estimated

A B C D A B C D

S1 0.326 0.071 1.000 1.000 0.316 0.031 1.043 1.146
S2 1.000 1.000 0.368 0.026 1.106 1.121 0.301 0.004
S3 0.209 0.134 0.820 0.013 0.115 0.033 0.871 0.002

Table 2
True and estimated concentrations of the four geochemical constituents (A, B, C
& D) observed at five observation points for five time frames; note that no
observation errors are introduced when the true concentrations were computed.

Well Time True Estimated

A B C D A B C D

W1 1 0.209 0.134 0.820 0.013 0.209 0.134 0.820 0.013
W2 1 1.000 1.000 0.368 0.026 1.000 1.000 0.368 0.026
W3 1 0.995 0.994 0.371 0.026 0.995 0.994 0.371 0.026
W4 1 0.692 0.663 0.544 0.021 0.692 0.663 0.544 0.021
W5 1 0.999 0.999 0.368 0.027 0.999 0.999 0.368 0.027
W1 2 0.209 0.134 0.820 0.013 0.209 0.134 0.820 0.013
W2 2 1.000 1.000 0.368 0.027 1.000 1.000 0.368 0.027
W3 2 0.998 0.998 0.369 0.026 0.998 0.998 0.369 0.026
W4 2 0.486 0.291 0.850 0.769 0.486 0.291 0.850 0.769
W5 2 0.966 0.953 0.400 0.076 0.966 0.953 0.400 0.076
W1 3 0.966 0.955 0.398 0.069 0.966 0.955 0.398 0.069
W2 3 0.210 0.135 0.820 0.013 0.210 0.135 0.820 0.013
W3 3 0.210 0.135 0.820 0.013 0.210 0.135 0.820 0.013
W4 3 0.326 0.071 1.000 1.000 0.326 0.071 1.000 1.000
W5 3 1.000 1.000 0.368 0.026 1.000 1.000 0.368 0.026
W1 4 0.427 0.258 0.843 0.602 0.427 0.258 0.843 0.602
W2 4 0.327 0.071 1.000 1.000 0.327 0.071 1.000 1.000
W3 4 0.381 0.147 0.948 0.920 0.381 0.147 0.948 0.920
W4 4 0.210 0.135 0.819 0.013 0.210 0.135 0.819 0.013
W5 4 0.326 0.071 1.000 1.000 0.326 0.071 1.000 1.000
W1 5 0.319 0.086 0.974 0.880 0.319 0.086 0.974 0.880
W2 5 0.326 0.071 1.000 1.000 0.326 0.071 1.000 1.000
W3 5 0.338 0.116 0.952 0.834 0.338 0.116 0.952 0.834
W4 5 0.691 0.662 0.544 0.021 0.691 0.662 0.544 0.021
W5 5 0.270 0.101 0.914 0.525 0.270 0.101 0.914 0.525

Table 3
NTFk results for the Example problem #1; the reconstruction quality O, sil-
houette width S, and AIC are estimated for number of sources k=2,3,4.

k O S AIC

2 2.300 ⋅ 10+6 1.000 1100.324
3 1.146 ⋅ 10-7 0.997 −1904.693
4 7.144 ⋅ 10-8 −0.665 −1893.951

Table 4
NTFk results for Example problem #2; the reconstruction quality O, silhouette
width S, and AIC are estimated for number of sources k=2, …, 7.

k O S AIC

2 6.072 ⋅ 10+07 1.000 13,085.080
3 2.752 ⋅ 10+07 1.000 12,477.540
4 1.176 ⋅ 10+07 1.000 11,801.880
5 6.284 ⋅ 10−07 0.981 −23,099.440
6 5.691 ⋅ 10−07 0.049 −22,909.530
7 5.689 ⋅ 10−07 0.351 −22,605.940
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= …U W G W G W G([ ; ], [ ; ], , [ ; ])k k k k k k
Z

k
Z1 1 2 2 (8)

After that, NTFk leverages a custom clustering algorithm to assign
each of these Z solutions in a given set, Ud, to one of k specific clusters.
This clustering method is based on k-means clustering that keeps the
number of solutions in each cluster equal to the number of NTF runs (cf.
(Vesselinov et al., n.d.-a; Alexandrov and Vesselinov, 2014)). For ex-
ample, for the case with k=2, after the execution of Z=1,000 NTF
runs (performed with random initial guesses for the W and G elements),
each of the two clusters will contain 1,000 solutions. In the cases when
the NTF problem is under-parametrized (i.e., low number of sources),
the final solution is generally not very sensitive to the random initial
guesses. This suggests there is a single global minimum which can be
identified regardless of the initial guesses for matrix/tensor elements. In
the cases when the NTF problem is over-parametrized (i.e., high
number of sources), the final solution is generally very sensitive to the
initial guesses. This suggests that potentially there are multiple local/
global minima which are identified using random initial guesses.

Note that we have to enforce the condition that the clusters have an
equal number of solutions, since each NTF simulation contributes an
equal number of solutions for each source. During the clustering, the
similarity between sources Wi1 and Wi2 is measured using the cosine
distance (Vesselinov et al., n.d.-a; Alexandrov and Vesselinov, 2014;
Pang-Ning et al., 2006). The cosine distance measures the angle be-
tween the two sources and effectively ignores their magnitude.

The main idea for estimating the unknown number of sources in
NTFk is to use the separation between the clusters as a measure of how
good a particular choice of k is as an accurate estimate of the number of
unknown sources. We estimate the degree of clustering for a different
number of sources, and plot it as a function of k, and we expect a sharp
drop after we cross ks (the optimal number of sources) (Vesselinov
et al., n.d.-a; Alexandrov and Vesselinov, 2014).

To quantify this behavior, after the clustering, we compute a mea-
sure, S(k) (called the average Silhouette width (Rousseeuw, 1987)), of
how well the solutions are clustered for a given number of original
sources, k. This measure of how well-clustered the NTFk solutions are
for different values of k can be applied to evaluate the optimal number
of contaminant sources, ks. In general, S(k) declines as k increases.

Theoretically, S(k) varies between 1 and −1. When S(k) is close to 1,
that indicates that the data is well-clustered (i.e., the average distance
between points within a cluster is small compared to the average dis-
tance between points in different clusters). As S(k) decreases, the
quality of the clusters decreases. Typically, S(k) declines sharply after
the optimal number of contaminant sources, ks, is reached.

In NTFk, in addition to the robustness, the average reconstruction
error (Eq. (7)) is used to evaluate the accuracy with which the derived
average (cluster) solutions [Wk

a;Gk
a] reproduce the observations C. In

general, the solution accuracy increases (while the solution robustness
decreases) when k goes up. Hence, the average silhouette width and
Frobenius norm for each of the k cluster solutions can be used to define
the optimal number of contaminant sources, ks. Specifically, ks can be
set equal to the minimum number of sources that accurately reconstruct
the observations (i.e., the Frobenius norm is less than a given value or
hit a plateau) and the clusters of solutions are sufficiently robust (e.g.,
the average silhouette width S is bigger than 0.8).

When some of the source geochemical compositions are very close
to each other or do not demonstrate clear features, it is also useful to
formulate another criteriion for the NTFk solution robustness, which is
based on the Akaike Information criterion (AIC) (Akaike, 2011). Spe-
cifically, to compare the NTF models with a different number of
sources, we calculate for each of them the AIC value. To calculate AIC,
we take from each of the sets of solutions with a different number of
sources, Uk, the best NTF solution, and use the corresponding Frobenius
norm, O(k), in the AIC formula:

⎜ ⎟= − = + − + ⎛
⎝

⎞
⎠

AIC Q L k MN K MN KMN O
KMN

2 2 ln( ) 2( ( ) ) ln
k( )

(9)

Here, the number of adjustable NTFk parameters, Q, is equal to the
number of components in the matrix W and the tensor G minus the
number of constraints for each observation well / time (cf. 6), which
reduces the number of adjustable parameters. Thus, we have,
Q=(k− 1)MN+Kk= k(MN+ K)−MN, where k is the number of
sources, M is the number of wells and N is the number of the ob-
servation time frames. L is the likelihood functions of the NTF solution
with given k, and we define it using the reconstruction error O(k) of the
NTF solutions: ln(L)=− (KMN/2) ln (O(k)/KMN) (KMN is the total
number of observational data points in the tensor C; if there is missing
data, the empty tensor elements are not counted). The AIC is a measure
of the relative quality of statistical models, which takes into account
both the likelihood function (in our case determined by the re-
construction error) and the independent degrees of freedom needed to
achieve this level of likelihood (the elements of the matrices W and H).
Choosing the model that minimizes AIC helps avoid overfitting. In
general, AIC decreases as the number of sources, k, increases. Typically,
AIC substantially drops when k= ks. For k > ks, the AIC values com-
monly plateau and do not exhibit substantial changes. Comparisons
between different solutions using AIC capture the parsimony principal;
models with a smaller number of parameters are favored when the

Fig. 2. Synthetic site map showing locations of unknown point sources (red rectangles) and wells (blue circles). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Table 5
True and estimated concentrations (ppm) of four geochemical constituents (A,
B, C & D) representing four synthetic sources (three contaminant sources S1, S2
& S3 and background concentrations).

Source True Estimated

A B C D A B C D

S1 0.000 0.000 1.000 0.500 0.000 0.000 0.830 0.415
S2 0.000 1.000 0.000 1.0000 0.000 0.865 0.018 0.875
S3 1.000 0.000 0.000 0.000 0.963 0.002 0.0240 0.014
Background 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
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reconstruction qualities of the models are similar.
In general, both the average silhouette width S and AIC should es-

timate the same number of sources ks. If there is a discrepancy, S-based
estimate is typically smaller than the AIC-based estimate (this type of
situation is discussed in the results section below). In general, the S-
based estimate of ks should be preferred because the solutions for
k > ks are potentially over fitting the data.

The NTFk algorithm is coded in Julia and will be available as open-
source code soon. It is fast and easy to use with the only user's input
being the processed data tensor.

3. Results

3.1. NTFk analysis of synthetic data

First, we apply the NTFk unsupervised ML algorithm described
above to identify the source concentrations from two synthetic ran-
domly-generated data sets representing scenarios generally consistent
with real-world conditions in terms of number of wells, number of
geochemical constituents, and the number of temporal observations.
These two problems are presented in Sections 3.1.1 and 3.1.2. They are
applied to test the NTFk algorithm and demonstrate its general ap-
plicability. Here, the concentrations are generated randomly and they
do not represent an actual groundwater contaminant transport pro-
blem. Through the first two synthetic problems, we also demonstrate
that NTFk can be applied even in situations when the concentrations
(and respective mixing ratios) vary erratically. The third synthetic
problem presented in the Section 3.1.3 is designed to represent a
groundwater contamination problem obtained through model simula-
tion of an advective-dispersive transport in an aquifer.

Fig. 3. Transients in the “true” (dashed lines) and estimated (solid lines) concentrations of the four contaminant sources (groundwater types) at six of the monitoring
wells; the dashed lines are not seen when the curves overlap. The true concentrations include 10% measurement error. The vertical axis is concentrations in ppm and
the horizontal axis is time in years.

Table 6
NTFk results for Example problem #3; the reconstruction quality O, silhouette
width S, and AIC are estimated for number of sources k=2, …, 5.

k O S AIC

2 9.103 ⋅ 107 1.000 6.412 ⋅ 104

3 3.497 ⋅ 107 1.000 6.136 ⋅ 104

4 7.628 ⋅ 10−7 1.000 −1.262 ⋅ 105

5 9.111 ⋅ 10−7 0.710 −1.221 ⋅ 105
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3.1.1. Example #1: 3 sources, 4 geochemical constituents, 5 wells and 5
time frames

We consider an example randomly generated to represent three
unknown synthetic sources (groundwater types). The “true” con-
centrations of four geochemical constituents (A, B, C & D) representing
the three synthetic sources are presented in Table 1; this is the “true”
matrix W (Eq. (7)). These sources are mixed at each well using random
mixing coefficient representing the core tensor G (Eq. (7)). The “true”
W and G are applied to estimate the “true” concentrations C (Table 2) of
four geochemical constituents (A, B, C & D) at five monitoring wells and
five different time frames. Here the measurement errors are assumed to
be zero. When we apply NTFk, W and G are unknown; the number of
sources (groundwater types) is also unknown. The only information
provided to NTFk is data tensor C.

Here and in the examples presented below, the source concentra-
tions and well mixing coefficients are generated using standard pseudo
random number generation capabilities provided in Julia (Bezanson
et al., 2014); the random numbers have uniform distribution between 0
and 1. For convenience and without loss of generality, the source
concentrations are scaled so that the maximum concentration at the
sources for each species is 1. The random mixing coefficients are also
scaled so that the mixing ratios for each well/time frame add up to 1. As

discussed above, this requirement comes from the problem setup; the
groundwater concentrations at each well are expected to be defined by
mixing of all the sources.

We used the data tensor C in NTFk to estimate the number of
sources and reconstruct the unknown source concentrations and mixing
coefficients at the wells over time. To identity the number of sources,
the algorithm performs analyses where the number of sources, k, is
equal to 2, 3, and 4. For each of these 3 cases, NTFk processes the
reconstruction quality O, silhouette width S, and AIC. The results are
presented in Table 3. Based on Table 3, the number of sources is three.
This is estimated based on the behavior of the robustness (silhouette
width S) and AIC criteria. The silhouette width S is close to 1 for the
cases of 2 and 3 sources; however, it drops substantially for 4 sources.
This suggests that the solution for 4 sources is not stable and non-un-
ique. Therefore, the solution for 3 sources should be preferred. Simi-
larly, AIC shows a substantial drop between cases of 2 and 3 sources;
this also suggests that the solution with 3 sources should be selected.
The same conclusion can be also drawn here by the reconstruction
quality. Clearly the solution for 3 sources produces a much better fit to
the data than the solution for 2 sources. The solution for 4 sources
produces a slightly better match than the solution for 3 sources but
using far more model parameters (i.e., more degrees of freedom). In this

Fig. 4. Transients in the “true” (dashed lines) and estimated (solid lines) mixing coefficients of the four contaminant sources (groundwater types) at six of the
monitoring wells. The vertical axis present dimensionless mixing rations between 0 and 1 and the horizontal axis is time in years. Note that these are the actual “true”
mixing coefficients without a measurement noise.
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case, the 3-source solution has 62 adjustable model parameters
(5× 5×2+3×4) while the 4-source solutions has 91 adjustable
model parameters (5× 5×3+4×4). There are only 100 observa-
tions (5×5×4) in all cases.

The NTFk estimated concentrations of the four geochemical con-
stituents (A, B, C & D) representing three synthetic sources are pre-
sented in Table 1. As can be seen, the algorithm accurately estimates
the geochemical signatures of the sources. It is also capable of accu-
rately reproducing the observed concentrations (Table 2).

The same synthetic problem was executed 1000 times with different
randomly generated concentrations (using different randomly gener-
ated mixing coefficients and species concentrations). In all 1000 cases,
the algorithm correctly identified the true number of sources. The
minimum silhouette width S from the 1000 runs for k=3 was 0.951.
The maximum silhouette width S for k=4 was −0.573. This demon-
strates that the gap in the minimum silhouette width S between the
optimal solution (k=3) and the next solution with one extra source
(k=4) is sufficiently large and this criteria is adequate by itself to
select the optimal number of sources in all the 1000 test cases.

The same synthetic problem was also rerun 1000 times adding
random noise to the concentrations in the data tensor C; the applied
noise is normally distributed (mean equal to zero and standard devia-
tion equal to 0.01) representing random measurement errors. Again,
the algorithm correctly identified the true number of sources in all test
cases. The minimum silhouette width S from all the 1000 runs for k=3
was 0.593. The maximum silhouette width S for k=4 was −0.168.
Again, in all the 1000 cases the solution for k=3 will be selected based
on the silhouette width S.

3.1.2. Example #2: 5 sources, 8 geochemical constituents, 12 wells and 12
time frames

As a second test, we consider an example randomly generated to
represent five unknown synthetic sources (groundwater types) observed
at 12 observation points over 12 time frames. Each source is re-
presented by varying concentrations of 8 geochemical species. The
number of wells (observation points), time frames, and geochemical
species is consistent with the real problem presented in Section 3.2. The
random concentrations are generated following the procedure outlined
in the previous Section 3.1.2 The concentration data are perturbed by
adding random noise from a normal distribution (mean equal to zero

and standard deviation equal to 0.01) representing measurement errors.
The concentration tensor C is provided to NTFk to estimate the number
of sources and spatial/temporal dynamics of the contaminant mixing.

Based on NTFk results listed in Table 4, the number of sources is
five. This is estimated by the behavior of the average silhouette width S
and AIC criteria as a function of the number of sources k. The average
silhouette width S is close to 1 for the cases when k≤ 5. S drops slightly
for k=5 but it is still close to 1. A substantial drop for S occurs for
k > 5. This suggests that the solution for more than 5 sources is non-
unique and depends strongly on the random initial guesses for the
unknown components of matrix W and tensor G. AIC shows a sub-
stantial drop between cases of 4 and 5 sources; this also suggests that
the solution with 5 sources should be selected.

The same conclusion can be also drawn here by the reconstruction
quality O. Clearly, the solution for 5 sources produces a much better fit
to the data than the solution for 4 sources. The solution for 6 sources
also produces a good match but based on the parsimony principal (also
captured by AIC), it should be rejected because it is using far more
model adjustable parameters. In this case, the 5 source NTFk solution
has 616 adjustable parameters (12×12×4+5×8) while the 6
source solution has 768 adjustable parameters (12× 12×5+6×8).
In all cases, there are only 1152 observations (12×12×8).

The same synthetic problem was rerun 1000 times with different
randomly-generated “true” concentrations C. All the runs are performed
adding random noise from a normal distribution (mean equal to zero
and standard deviation equal to 0.01). In all the 1000 cases, the algo-
rithm correctly identified the true number of sources. The minimum
silhouette width S from all the 1000 runs for k=5 was 0.870. The
maximum silhouette width S for k=6 was 0.162. Based on this, in all
the 1000 cases, the solution for k=5 will be selected.

3.1.3. Example #3: 3 sources, 4 geochemical constituents, 15 wells and 101
time frames

NTFk is applied to analyze a synthetic groundwater contamination
problem generated using a model simulating advective-dispersive
transport. A map showing locations of monitoring wells providing data
to characterize three point contaminant sources is presented in Fig. 2.
The concentration of geochemical species released from the source are
estimated using an analytical solution of three-dimensional advective-
dispersive contaminant transport (Wexler and Wexler, 1992; Park and

Fig. 5. LANL site map showing locations of some of the monitoring wells.
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Zhan, 2001). The concentrations are computed using open-source codes
Anasol.jl (O'Malley and Vesselinov, 2018) and Mads.jl (Vesselinov and
O'Malley, 2016a; Vesselinov and O'Malley, 2016b) written in Julia
(Bezanson et al., 2014). In these computations, it is assumed that each
of the three sources is characterized by four geochemical species (A, B,

C, and D). In addition, there is also an unknown source representing the
background concentrations of these species. The “true” unknown con-
centrations (in ppm) of the geochemical species A, B, C, and D are
shown in Table 5. The concentrations of the four geochemical species at
the 15 monitoring wells are computed for 101 annual time frames from
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Fig. 6. Observed (dashed lines) and NTF k-predicted (solid lines) concentrations at the monitoring wells; note that for some of the wells/species the two lines overlap.
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0 to 100 years. Concentration curves for six of the monitoring wells are
presented in Fig. 3. Random uniform measurement errors of 10% have
been added to the concentration data. The flow and transport para-
meters applied to compute the contraction transient are: advective
(linear) pore velocity= 10 m/yr, logitudinal dispersivity= 70 m,

transverse horizontal dispersivity= 15 m, transverse vertical dis-
persivity= 0.3 m, porosity= 0.1, contaminant flux=50 kg/yr (con-
stant at each point source). The first, second and third sources are ac-
tivated at times equal to 0, 20 and 40 years. The three-dimensional data
tensor with size (15× 4×101) representing concentrations in 15 wells
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of 4 geochemical constituents for 101 time frames is analyzed using
NTFk. Again, this is the only information provided to the algorithm.
NTFk automatically identifies the number of sources (4) and the con-
centrations of geochemical species A, B, C, and D at the 4 sources. The
results for parameters applied to estimate the number of sources are

listed in Table 6. Clearly, the AIC drops substantially once the solution
reaches 4 sources due to substantial decrease of the reconstruction
quality O. AIC and O do not substantially improve for 5 sources. The
silhouette width S also declines below 1 for 5 sources which also in-
dicated that the solution with 4 sources is the correct one. The NTFk
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estimates of the source concentrations are shown in Table 5. A com-
parison between the “true” and NTFk estimated concentrations for six
of the wells are presented in Fig. 3. Similarly, the “true” and estimated
mixing coefficients are presented in Fig. 4. The NTFk estimates provide
a very good representation of the mixing coefficients at each well over

time. This demonstrates the capability of NTFk to predict the spatial
and temporal dynamics of contaminant mixing. The results for the other
monitoring wells (not shown in the figures) are consistent with the
results presented in Figs. 3 and 4.
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3.2. NTFk analysis of site data

NTFk is applied to analyze the groundwater geochemistry data ob-
served in the regional aquifer beneath the Los Alamos National
Laboratory (LANL). The aquifer is contaminated with chromium (Cr6+)

and there are several contaminant sources that might have contributed
to the contaminant plume beneath the LANL site near Sandia and
Mortandad Canyons (Fig. 5). The investigation of the contaminant
plume is ongoing (Vesselinov et al., 2013; Vesselinov et al., n.d.-b;
LANL, 2009; LANL, 2012; LANL, 2018a). The site conceptual model
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describing the physical and biogeochemical processes controlling the
movement of groundwater and contaminants in the environment is
presented in detail in (Vesselinov et al., n.d.-a; LANL, 2009; LANL,
2012; LANL, 2018a; LANL, 2018b). It is important to note that due to
site complexities, it is unknown how many different contaminant

sources (groundwater types) are mixed in the regional aquifer. The
geochemical signatures associated with these sources are also unknown.
In addition, to chromium, some of the contaminant sources are ex-
pected to have elevated tritium (3H), nitrate (NO3

−), chloride (Cl−),
and perchlorate (ClO4). Different contaminant sources are expected to
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have different geochemical signatures representing a mixture of dif-
ferent contaminants. The contaminants have been released along Los
Alamos, Sandia and Mortandad Canyons (Fig. 5). However, due to
complexities of the three-dimensional flow in vadose zone (including
perching horizons), the contaminants have been mixed before they

entered the regional aquifer in the general area between Sandia and
Mortandad Canyons (Fig. 5). Furthermore, contaminant releases along
the same canyon are expected to have different signatures over time
due to transients in the infiltration and contaminant-mass fluxes (LANL,
2018a).

A subset of the geochemical data collected at the site is applied for
the NTFk analysis and is presented in Fig. 6. The data comes from 19
monitoring well screens: R-67, R-14#1, R-1, R-15, R-62, R-43#1, R-
43#2, R-42, R-28, R-50#1, R-11, R-45#1, R-45#2, R-44#1, R-13, R-
35a, R-35b, R-36, and SIMR-2 (the number after # represent screen
number within multi-screen wells ordered vertically from top to
bottom; the screen names without # indicate single-screen wells). The
well order approximately follows the direction of the groundwater flow
which is from west to east. The data include representative measure-
ments for eight geochemical species: chromium (Cr), chloride (Cl−),
perchlorate (ClO4), tritium (3H), nitrate (NO3), calcium (Ca), magne-
sium (Mg), and sulfate (SO4). Other geochemical species have been
measured at these wells; however, prior geochemical analyses of the
site data (LANL, 2018a) have identified the above subset of geochem-
ical species to be the most representative of the site conditions. The
analyzed data represents annual averages for each year between 2005
and 2016 (Fig. 6). Annual averages are processed not due to metho-
dological or computational limitations but due to irregularities in the
sampling events. The geochemical data are collected on a quarterly
basis (but sampling events are on different dates for different wells). In
addition, there are numerous irregular sampling events. Due to general
irregularity of the sampling events, we computed yearly averages. The
final dataset includes 12 geochemical time snapshots in total. Note that
there are gaps in the processed dataset (Fig. 6). The dataset was ana-
lyzed using NTFk to define the potential groundwater sources
(groundwater types) that are represented as geochemical mixtures in
the monitoring data over time. The NTFk analysis accounts for the
mixing of different groundwater types, where some of the types might
be associated with background groundwater types and others might be
caused by the contamination sources.

The NTFk results are presented in Table 7. NTFk identifies 7 original
groundwater sources with different geochemical composition are mixed
in the aquifer. This estimate is based on the silhouette width S values.
Note that S≈ 1 for k≤ 7. The AIC values suggest the existence of 7
sources as well.

The NTFk-estimated concentrations of each of the eight geochemical
species prior to mixing with regional aquifer water for the identified
seven sources (groundwater types) are presented in Table 8. These are
the concentrations of the groundwater types that are mixed to re-
produce the observed concentrations at the wells over time.

Fig. 6 shows the observed versus estimated geochemical con-
centrations at monitoring wells over time. NTFk accurately reproduces
the geochemical transients observed at all the site monitoring wells.

Note that all the identified sources (groundwater types) have dis-
tinct geochemistry (Table 8). Sources 1, 2, 4, 5 and 6 are clearly as-
sociated with contaminant sources because of the presence of con-
stituent concentrations above background. Source 1 has elevated values
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Table 7
NTFk results for the LANL site problem; the reconstruction quality O, silhouette
width S, and AIC are estimated for number of sources k=2, …, 8.

k O S AIC

2 9.185 ⋅ 105 1.000 989.225
3 9.054 ⋅ 103 1.000 538.317
4 2.026 ⋅ 102 0.997 175.943
5 2.566 ⋅ 101 1.000 0.767
6 0.823 0.999 −322.662
7 0.009 0.759 −758.968
8 1.054 ⋅ 10−14 −0.383 −3681.497
9 1.312 ⋅ 10−14 −0.222 −3609.816
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for Cr, Cl−, NO3, Ca, Mg, and SO4. This is the main source of chromium
that constitutes the majority of the plume footprint. This source is a
combination of releases on the ground surface along Sandia Canyon.
The estimated chromium concentration of about 3000 ppb is corrobo-
rated by the source concentrations estimated using hydrogeologic data
and techniques (LANL, 2018a). Source 2 has elevated ClO4, which is a
known contaminant released on the ground surface in Mortandad
Canyon (LANL, 2009; LANL, 2012). Source 4 has increased NO3 and
potentially comes from Los Alamos, Sandia or Mortandad Canyons.
Source 5 has elevated 3H; Cr, Cl−, Ca, Mg, and SO4 are also high. This is
potentially a mixed source where contaminants originating along Los
Alamos, Sandia and Mortandad Canyons are mixing in perched
groundwater horizons in the vadose zone before their arrival at the
regional aquifer (LANL, 2009; LANL, 2012). Source 6 has elevated Cl−,
Ca, Mg, and SO4 and Cr. This might be groundwater originating from
the same source as earlier chromium-contaminated water released in
Sandia Canyon, since it has very low concentrations of 3H. The above
interpretations of the NTFk estimated source (groundwater types) are
consistent with the site conceptual model but provide new insights
about the contaminant fate and transport at the site.

Sources 3 and 7 (Table 8) represent the non-contaminated
groundwater signature in the plume area (“background” groundwater
types). The variations in the mixing of these two background ground-
water types represent variability in the background compositions, po-
tentially as a result of some mixing with contaminated groundwater
sources. The temporal dynamics of sources 3 and 7 may represent
geochemical reactions occurring in the aquifer due to the mixing of
groundwater with different geochemistry or heterogeneity in the
aquifer materials causing changes in the groundwater geochemistry.

NTFk also provides estimates of the mixing dynamics of the sources
over time. The estimated temporal evolution of how the seven
groundwater types are represented and mixed at each monitoring well
is presented in Fig. 7.

All seven groundwater types are observed at appreciable levels in
only two of the monitoring wells: R-42 and R-28 (Fig. 7h and i). These
wells have the highest chromium concentrations (Fig. 6h and i) and are
located in the center of the chromium plume (Fig. 5). At both wells, the
mixing ratios for background source 7 are decreasing over time, while
the mixing ratios for contaminant source 6 are increasing over time.
Source 4 at R-28 seems to be decreasing as well. The R-42 transients
may suggest a peak mixing ratio for sources 1 and 5 at R-42 in 2013.

Results for wells R-43, R-62 and R-67 upgradient from R-42 and R-
28 (Fig. 5) potentially represent recent arrival of contaminants in this
area. The mixing transients observed in the upper and lower screens in
R-43 (R-43#1 and R-43#2, respectively) are very different. R-43#1 is
dominated by source 4, although the contribution seems to be dimin-
ishing in time while the contribution of contaminant source 1 appears
to be sharply increasing (Fig. 7f). R-43#2 is observing increasing con-
tributions of sources 4 and 6 (Fig. 7g) which might be caused by slow
vertical groundwater flow and transport from shallow portions into
deeper portions of the aquifer. At R-62, the background source 7 is
decreasing, but the sources 1, 2, 4 and 5 are increasing (Fig. 7e). R-67 is
dominated by background sources 3 and 7, but their contribution is

decreasing (Fig. 7a) while the impact of source 4 is increasing which
suggests a contaminant arrival (Fig. 6a). The further upgradient wells
(R-14 and R-1; Fig. 5) are dominated by background sources 3 and 7
(Fig. 7b and c) and there are no contaminant sources detected at these
wells.

The near-field downgradient wells from R-42 and R-28 (R-50#1. R-
11. R-45#1, R-45#2, R-44#1, R-13, and SIMR-2) also show transients
that represent arrival of contaminated groundwater. At R-50#1, the
contributions of the background groundwater types are changing over
time (Fig. 7j) and there is an increase in contaminated source 1. R-11
mixing ratios show increasing contributions of contaminated sources 4
and 6 (Fig. 7k); source 2 is going up while the sources 1 and 5 might be
slightly going down in time. At the upper screen of R-45 (R-45#1), the
contaminated sources 1, 2, 4 and 5 are increasing. In contrast, at the
lower screen (R-45#2) source 4 is decreasing over time. The difference
in the behavior of source 4 in R-45#1 (increasing) and R-45#2 (de-
creasing) potentially suggests complex groundwater flow/transport
conditions and/or differences in the geochemical processes associated
with different rock types within the regional aquifer. R-44#1 is domi-
nated by sources 3, 4, and 7 (Fig. 7n); the contribution of sources 1 and
2 is slightly increasing. R-13 shows (Fig. 7o) a slight increase of source
4. SIMR-2 is affected by low proportions of contaminant sources 2, 4,
and 6 (Fig. 7s).

R-35b and R-35a are shallower and deeper wells screened at dif-
ferent depths next to an existing water-supply well. R-35b is completed
close to the regional water table and contaminant sources 2, 4 and 6
appear to be are present (Fig. 7q). The vertical location of the R-35a
screen matches the top of supply-wells louvers. R-36b is dominated by
background sources 3 and 7; however, contaminant sources 2 and 6 are
potentially present at this well in low proportions (Fig. 7p).

R-36 is anomalous and very different from all the other wells. All
groundwater types are present here except source 1 (Fig. 7r). This is
extremely surprising, considering the well location and the mixing ra-
tios observed at the nearby wells. Groundwater screened at R-36 may
represent an area of infiltration with geochemical composition very
different from all the other wells. However, a more probable explana-
tion is that R-36 might be tapping groundwater in a perched saturated
horizon in the vadose zone which is above the regional-aquifer water
table and detached from the regional aquifer sometime in the past. In
this case, the water observed at R-36 may represent old aquifer
groundwater which was flowing in the aquifer in the past before the
perched zone was detached from the regional aquifer. This interpreta-
tion is also corroborated by the water-level data observed at R-36
(LANL, 2018a). As a result, R-36 is probably not representative of the
aquifer conditions. It is quite possible that very different contaminant
conditions might exist within the regional aquifer at the location of R-
36.

R-15 is also very different from the other wells, it is predominantly
influenced by source 2 (ClO4), which appears to show an increasing
contribution over time (Fig. 7d). Source 2 has been also detected at R-
50#1 and SIMR-2.

The analyses also suggest anomalous behavior in 2010 at R-43#2
(Fig. 7g) and in 2014 at R-28 (Fig. 7i). This might be caused by

Table 8
NTFk estimated concentrations of the 7 groundwater types (contaminant sources) mixed at each observation well.

Sources Cr Cl− ClO4
3H NO3 Ca Mg SO4

(μg/L) (mg/L) (μg/L) (pCi/L) (mg/L) (mg/L) (mg/L) (mg/L)
S1 2970.22 63.06 0.00 0.00 13.94 73.37 24.74 171.02
S2 0.79 0.35 13.87 0.00 0.49 5.27 1.71 0.61
S3 0.24 3.62 0.00 0.00 0.01 40.77 10.90 0.06
S4 0.48 0.14 0.00 0.00 10.49 21.09 5.00 10.18
S5 20.53 50.57 0.00 949.53 2.39 66.54 14.89 49.63
S6 1.46 64.24 0.00 0.00 2.81 50.92 10.43 68.08
S7 0.10 0.03 0.00 0.00 0.01 0.43 0.78 0.88
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Fig. 7. NTFk estimated transient mixing ratios of the seven groundwater types at the site monitoring wells. Note that the mixing ratios for each period of record for
each well add to 1.
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systematic errors associated with the field sampling of these two wells;
for example, issues with bore-hole water sampling systems; (systematic
errors caused by laboratory sample analyses can be ruled out because
most of the well samples are processed simultaneously in batches

(LANL, 2018a)). Alternative explanation is that these anomalies might
represent the effects of field activities conducted at these wells (LANL,
2018a).

It is important to note that even though limited data are available

Fig. 7. (continued)
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for some of the wells (e.g R-67 (Fig. 6a) and SIMR-2 (Fig. 6s), the NTFk
analyses are capable to extract meaningful information about the geo-
chemical mixing at these wells.

The mixing information presented in Fig. 7 is also shown as spatial
maps in Fig. 8. The maps depict the transient mixing ratios of the seven
groundwater types (sources) identified as present at the site monitoring

wells. The maps show the mixing ratios of each source (groundwater
type). The mixing ratios are estimated at the wells and interpolated in
space between the wells using Kriging. The interpolation is performed
for each temporal time frame separately. An exponential variogram is
applied with an integration scaling coefficient equal to 1000m. The
maps represent 12 temporal snapshots of mixing different sources

Fig. 8. NTFk estimated transients in the spatial footprint of the seven sources (ground-water types) at the LANL site.
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(groundwater types) from 2005 to 2016 based on the averaged geo-
chemical data (Fig. 6).

Based on the maps in Fig. 8, contaminant sources 1, 5 and 6 are
centered in the area of R-28 and R-42. The changes in the shape of the
estimated spatial extent of these sources (groundwater types) are pre-
dominantly driven by the addition of new monitoring wells over the
years (see Fig. 6). The major difference between sources 1, 5 and 6 is

that source 5 is not dominant in R-62 and R-43. However, sources 1 and
6 are present at R-62 and R-43. Source 2 is centered in the area of R-15.
Source 4 is in the area of R-43 and R-11; it has been also observed in R-
62 and R-15. However, its impact seems to be diminishing at the R-62/
R-15 area and increasing at R-11 in recent years. The transients in the
mixing ratios between 2008 and 2013 (snapshots for source 4 in Fig. 8)
may suggest impacts of lateral plume migration or shifts in the

Fig. 8. (continued)
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infiltration pathways within the vadose zone. The background
groundwater types captured as source 3 represents the temporal and
spatial dynamics of the Cl, Ca, andMg geochemical species. Background
source 7 represents the SO4 dynamics. Diminished background mixing
ratios are shown in the center of the chromium plume (area of the wells
detecting sources 1, 5 and 6). The temporal dynamics of the mixing
ratios in the area of chromium plume represent shifts in the mixing of

background and contaminated groundwater. These dynamics can also
represent geochemical processes occurring between water infiltrated
from the vadose zone (e.g., sources 1, 5 and 6) interacting with the
background regional groundwater.

The maps presented in Fig. 8 are unrealistic because the spatial
distribution of the groundwater types (contaminant plumes) are ex-
pected to have much more complex shapes due to aquifer heterogeneity

Fig. 8. (continued)
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and complexity of the physical and geochemical processes impacting
contaminant transport. However, even with this limitation, they pro-
vide a visual representation of the potential plume shapes. It is im-
portant to note that the NTFk analyses are very fast; the results pre-
sented here take minutes to generate. Based on our site modeling
experience (LANL, 2018a), similar geochemical inverse-model analyses
of all the data presented here will take months of computational work

(the development and testing of the simulation models will make this
process even longer). For example, the current LANL site model is open
source and available at GitLab (Vesselinov et al., 2018); the model in-
cludes more than 140,000 calibration targets of pressure and con-
centration transients and more than 200 adjustable model parameters
estimated during the model calibration. Currently, only the chromium
transients are applied in the inversion process, and the model

Fig. 8. (continued)
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calibration takes about a month in parallel utilizing up to 640 pro-
cessors.

The NTFk results presented and discussed above are consistent with
more complicated inverse analyses using numerical models applied to
solve this problem (Vesselinov et al., 2013; Vesselinov et al., n.d.-b;
LANL, 2012; LANL, 2018a). The results are also generally consistent
with machine-learning analyses obtained using a matrix-based

technique (NMFk; (Vesselinov et al., n.d.-a)). In the future, the NTFk
results will be applied as input to inverse analyses of site numerical
models. In this way, instead of calibrating against all the geochemical
data, the numerical models would be calibrated against the NTFk pre-
dicted geochemical mixtures. The anomalies detected at R-36, R-43#2
and R-28 through our unsupervised ML algorithm demonstrate its
power for exploratory data analyses.

Fig. 8. (continued)
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4. Conclusions

We have developed a novel unsupervised Machine Learning (ML)
method based on Nonnegative Tensor Factorization (NTF) combined
with a custom k-means clustering called NTFk. Our work demonstrates
the applicability of our NTFk algorithm for Blind Source Separation
(BSS). NTFk has been applied to identify contaminant sources based on

high-dimensional (tensor) datasets representing spatial and temporal
variation of observed geochemical species. The NTFk approach is an
extension of our matrix-based machine learning methods presented in
(Vesselinov et al., n.d.-a; Alexandrov and Vesselinov, 2014). Our results
demonstrate that NTFk can be applied to identify (1) the unknown
number of groundwater types (contaminant sources) present in an
aquifer, (2) the original geochemical concentrations (signatures) of

Fig. 8. (continued)
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these groundwater types before their mixing in the aquifer, and (3)
spatial and temporal dynamics in the mixing of these groundwater
types.

The inverse problem solved in the NTFk analysis is under-de-
termined. To address this, the NTFk algorithm thoroughly explores the
plausible inverse solutions, and seeks to narrow the set of possible so-
lutions by estimating the number of contaminant source signals needed

to robustly and accurately reconstruct the observed data.
In the synthetic tests, we generated datasets representing unknown

contaminant sources detected as a set of mixed signals (groundwater
types / contamination sources) at a series of monitoring wells (detectors
/ sensors) and for a series of time frames (snapshots). Using only the
synthetic datasets representing the observed concentrations at the
monitoring wells, NTFk correctly identified the number of contaminant

Fig. 8. (continued)
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sources, the geochemical signatures of the original groundwater types
before being mixed, and mixing coefficients at the wells over time.

We also applied NTFk on a real-world dataset related to the LANL
chromium contamination site. The results of this analysis are consistent
with previous data and model analyses conducted at the site
(Vesselinov et al., n.d.-a; Vesselinov et al., 2013; Vesselinov et al., n.d.-
b; LANL, 2012; LANL, 2018a), and provide additional insights. We

highlight two insights in particular. The first is that the differences
observed at the upper and lower screens R-43 suggest a late arriving
contaminant source that has not had an opportunity to penetrate the
deeper portion of the aquifer. The lack of 3H in R-43#1 indicates that
this late arriving source in the regional aquifer may be associated with
an early contaminant release that took a long time to move through the
vadose zone. The second is that the anomalous mixing ratios at R-36

Fig. 8. (continued)
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indicate that it may be in a perched zone that is disconnected from the
regional aquifer. If so, it may be beneficial to add a monitoring well
near R-36 that goes deeper into the subsurface. The anomalous hy-
drologic data at this location further corroborates the hypothesis that R-
36 is disconnected from the aquifer (LANL, 2018a). In addition to these
insights, the NTFk algorithm demonstrated its capabilities to identify
systematic errors and anomalies in LANL site data.

NTFk allows the contaminant fields observed at a series of the de-
tectors to be “unmixed” into a series of independent plumes with dif-
ferent geochemical signatures. This results from the NTFk analyses can
be applied to guide the conceptualization of the site conditions and the
design of numerical models that are developed to represent these
conditions. In some cases, decoupled model analyses might be applied
to independently analyze the groundwater transport of each
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contaminant source which can be computationally much more efficient.
NTFk results coupled with model analysis can yield crucial information
needed to (1) development of site contaminant fate and transport
conceptual models, (2) make predictions of contaminant behavior, (3)
assess contamination risks, and (4) guide remediation strategies.

The NTFk analyses are fast and relatively easy to implement. An
open-source code written in Julia (Bezanson et al., 2014) is in

development and will be released soon. All the analyses presented in
the paper take several minutes to execute in serial. Since most of the
computations are independent, the algorithm can be performed also in
parallel which further increases its computational efficiency and scal-
ability.

It is important to note that the presented NTF analyses are following
the classical BSS formulation assuming a linear mixing problem.
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However, since the NTF problem is solved using nonlinear minimiza-
tion procedure as discussed in Section 2.1, the BSS problem can be
expanded to account for nonlinear mixing or geochemical processes.
This will increase the number of unknowns as well as the computational
complexity but as long as data are available to represent nonlinear
processes, the BSS problem can be solved. We plan to extend our ML
analyses to account for nonlinear processes in the future.

In summary, the major pros of the proposed methodology are that it
is fast, scalable and unbiased. It can be applied to tackle large high-
dimensional site datasets without prior site knowledge and assump-
tions. The cons are that it assumes linearity (in its current form) and
requires informative monitoring data. If the latter is an issue, our ML
methodology can be applied to evaluate information content of the data
and guide additional data collection strategies that can provide
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informative data.
The possible applications of the NTFk approach are not limited to

groundwater contamination problems. NTFk can be readily used to
identify contaminant sources based on soil and air pollution data. NTFk
can be applied to analyze any mixture of ingredients. In this case, our
constrained NTFk algorithm can be applied to identify the ingredients
of the sources that are mixed to produce observed mixtures.

NTFk is applicable for unsupervised ML analyses for solving various

types of data analytics problems including feature extraction and ex-
ploratory analyses. NTFk can also be applied to large high-dimensional
datasets with constraints only related to physical memory of the com-
putational resources that are used.
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